Rigidity of Compact Minimal Submanifolds in a Sphere
نویسندگان
چکیده
In this paper we study n-dimensional compact minimal submanifolds in S with scalar curvature S satisfying the pinching condition S > n(n − 2). We show that for p ≤ 2 these submanifolds are totally geodesic (cf. Theorem 3.2 and Corollary 3.1). However, for codimension p ≥ 2, we prove the result under an additional restrictions on the curvature tensor corresponding to the normal connection (cf. Theorem 3.1 and Corollary 4.1). We also show that the scalar curvature S of a non-totally geodesic n-dimensional non-negatively curved minimal submanifold in S with flat normal connection satisfies n(n − p − 1) ≤ S ≤ n(n − 2) (cf. Theorem 4.1). Since for a compact hypersurface M of S the normal connection is flat, we use the above estimate for a scalar curvature S of a non-negatively curved minimal hypersurface M in S to infer that either M is totally geodesic or else it is isometric
منابع مشابه
Rigidity of Rank-one Factors of Compact Symemtric Spaces
Questions of isolation phenomena for minimal submanifolds have been posed for many years. Perhaps the most studied case is for minimal submanifolds of the sphere. Lawson [L1], Chern, do Carmo and Kobayashi [CCK], Barbosa [B], Fischer-Colbrie [FC] and others studied minimal submanifolds of the sphere using a range of techniques and obtained existence and uniqueness results. An important part of ...
متن کاملRigidity of Rank-one Factors of Compact Symmetric Spaces
We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.
متن کاملSecond Variation of Compact Minimal Legendrian Submanifolds of the Sphere
The second variation operator of minimal submanifolds of Riemannian manifolds (the Jacobi operator) carries information about stability properties of the submanifold when it is thought of as a critical point for the area functional. When the ambient Riemannian manifold is a sphere S, Simons [S] characterized the totally geodesic submanifolds as the minimal submanifolds of S either with the lowe...
متن کاملExtrinsic sphere and totally umbilical submanifolds in Finsler spaces
Based on a definition for circle in Finsler space, recently proposed by one of the present authors and Z. Shen, a natural definition of extrinsic sphere in Finsler geometry is given and it is shown that a connected submanifold of a Finsler manifold is totally umbilical and has non-zero parallel mean curvature vector field, if and only if its circles coincide with circles of the ambient...
متن کاملCurvature and Rigidity Theorems of Submanifolds in a Unit Sphere (communicated by Uday Chand De)
In this paper, we investigate n-dimensional submanifolds with higher codimension in a unit sphere Sn+p(1). We obtain some rigidity results of submanifolds in Sn+p(1) with parallel mean curvature vector or with constant scalar curvature, which generalize some related rigidity results of hypersurfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000